Neuromorphic computing using biologically inspired Spiking Neural Networks (SNNs) is a promising solution to meet Energy-Throughput (ET) efficiency needed for edge computing devices. Neuromorphic hardware architectures that emulate SNNs in analog/mixed-signal domains have been proposed to achieve order-of-magnitude higher energy efficiency than all-digital architectures, however at the expense of limited scalability, susceptibility to noise, complex verification, and poor flexibility. On the other hand, state-of-the-art digital neuromorphic architectures focus either on achieving high energy efficiency (Joules/synaptic operation (SOP)) or throughput efficiency (SOPs/second/area), resulting in poor ET efficiency. In this work, we present THOR, an all-digital neuromorphic processor with a novel memory hierarchy and neuron update architecture that addresses both energy consumption and throughput bottlenecks. We implemented THOR in 28nm FDSOI CMOS technology and our post-layout results demonstrate an ET efficiency of 7.29G $\text{TSOP}^2/\text{mm}^2\text{Js}$ at 0.9V, 400 MHz, which represents a 3X improvement over state-of-the-art digital neuromorphic processors.
translated by 谷歌翻译
基于机器学习的模型最近获得了吸引力,作为通过构建提供快速准确的性能预测的模型来克服FPGA下游实现过程的一种方式。但是,这些模型有两个主要局限性:(1)培训需要大量数据(从FPGA合成和实施报告中提取的功能),这是由于耗时的FPGA设计周期而具有成本范围的; (2)针对特定环境训练的模型无法预测新的未知环境。在云系统中,访问平台通常是昂贵的,ML模型的数据收集可以显着增加系统的总成本所有权(TCO)。为了克服这些限制,我们提出了Leaper,这是一种基于FPGA的基于转移学习的方法,可将现有的基于ML的模型适应新的,未知的环境,以提供快速准确的性能和资源利用预测。实验结果表明,当我们使用转移的模型进行5次学习的云环境中的预测并将设计空间探索时间从天数到几个小时,我们的方法平均提供了85%的精度。
translated by 谷歌翻译
在资源受限的嵌入式系统上部署卷积神经网络的关键推动力是二进制神经网络(BNN)。 BNNS通过将功能和权重进行分配来保存内存并简化计算。不幸的是,二进制不可避免地伴随着准确性的严重降低。为了减少二进制和完整精确网络之间的准确性差距,最近提出了许多维修方法,我们已经将其分类并在本章中进行了单一概述。维修方法分为两个主要分支,培训技术和网络拓扑变化,可以进一步分为较小的类别。后一个类别为嵌入式系统引入了额外的成本(能源消耗或额外的面积),而前者则没有。从我们的概述中,我们可以观察到在减少准确性差距方面取得了进展,但是BNN论文并不对应使用哪种修复方法进行对齐,以获得高度准确的BNN。因此,本章包含一项经验综述,该综述评估了许多维修方法的好处,而不是Resnet-20 \&Cifar10和Resnet-18 \&Cifar100基准。我们发现三个维修类别最有益:功能二进制器,功能归一化和双重残留。基于这篇评论,我们讨论未来的方向和研究机会。我们勾勒出与BNN在嵌入式系统上相关的收益和成本,因为BNN是否能够缩小准确性差距,同时在资源受限的嵌入式系统上保持高能效率仍然有待观察。
translated by 谷歌翻译
5G毫米波(MMWAVE)信号与传播信道和传播环境具有固有的几何连接。因此,它们可用于共同本地化接收器并映射传播环境,该传播环境被称为同时定位和映射(SLAM)。5G SLAM中最重要的任务之一是处理测量模型的非线性。为了解决这个问题,现有的5G SLAM依赖于Sigma点或扩展卡尔曼滤波器,针对现有概率密度函数(PDF)线性化测量功能。在本文中,我们研究了关于后部PDF的测量功能的线性化,并将迭代后线性化滤波器实施到泊松多Bernoulli Slam滤波器中。仿真结果表明了所得SLAM过滤器的精度和精确改善。
translated by 谷歌翻译
受到深度神经网络(DNN)的显着学习和预测性能的启发,我们应用了一种特殊类型的DNN框架,称为模型驱动的深度展开神经网络,可重新配置智能表面(RIS) - 提出的毫米波(MMWAVE)单个-Input多输出(SIMO)系统。我们专注于上行链路级联信道估计,其中考虑了已知和固定基站组合和RIS相位控制矩阵用于收集观察。为了提高估计性能并降低训练开销,可以在深度展开方法中利用MMWave通道的固有通道稀疏性。验证所提出的深度展开网络架构可以优于最小二乘(LS)方法,其具有相对较小的训练开销和在线计算复杂性。
translated by 谷歌翻译